

Density Functional Theory Investigation of NO_2 Gas Adsorption Properties on $X_{12}Y_{12}$ Nanocages (X= B, In and Y = As, P)

Atthar Luqman Ivansyah^{1,*}, Riska Cindi Yustiarini², Jamal Abdul Nasir³, Tety Sudiarti²

¹Physical and Inorganic Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia

²Department of Chemistry, Faculty of Science and Technology, UIN Sunan Gunung Djati, Bandung 40614, Indonesia

³Department of Chemistry, Kathleen Lonsdale Materials Chemistry University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

*E-mail: atthar@csx.itb.ac.id

DOI: https://doi.org/10.26874/jkk.v8i1.935

Received: 12 May 2025, Revised: 3 July 2025, Accepted: 4 July 2025, Online: 5 July 2025

Figure

Figure S1 HOMO-LUMO energy gap across all systems

Figure S2 (TDOS), (PDOS), and (OPDOS) for NO₂ Adsorption on : (a) $B_{12}As_{12}$, (b) $B_{12}P_{12}$, (c) $In_{12}As_{12}$, and (d) $In_{12}P_{12}$

Figure S3 AIMD simulation snapshot of NO₂ Adsorption on B₁₂As₁₂, B₁₂P₁₂, In₁₂As₁₂, In₁₂P₁₂

Figure S4 Uv-Vis Spectrum of $B_{12}As_{12}$, $B_{12}P_{12}$, $In_{12}As_{12}$, $In_{12}P_{12}$

Figure S5 UV-Vis Spectrum of B12As12-NO2, B12P12-NO2, In12As12-NO2, In12P12-NO2

(b)

Figure S6 IRI Analysis of nanocage-gas systems: (a) $B_{12}As_{12} - NO_2$, (b) $B_{12}P_{12} - NO_2$ (c) $In_{12}As_{12} - NO_2$, and (d) $In_{12}P_{12} - NO_2$

(a)

(c)

(d)

Figure S7 IGMH Analysis of (a) $B_{12}As_{12} - NO_2$, (b) $B_{12}P_{12} - NO_2$ (c) $In_{12}As_{12} - NO_2$, and (d) $In_{12}P_{12} - NO_2$

Figure S8 ESP Analysis of (a) $B_{12}As_{12} - NO_2$, (b) $B_{12}P_{12} - NO_2$ (c) $In_{12}As_{12} - NO_2$, and (d) $In_{12}P_{12} - NO_2$

Table

	Е номо	E _{lumo}	Eg	IP	EA	μ	η	S
	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
B ₁₂ As ₁₂	-6.6921	-3.3886	3.3035	6.6921	3.3886	-5.0403	4.9978	0.1000
$B_{12}As_{12}$ -NO ₂	-6.5179	-3.5322	2.9857	6.5179	3.5322	-5.0250	4.7518	0.1052
$B_{12}P_{12}$	-6.9784	-3.1635	3.8149	6.9784	3.1635	-5.0709	5.3966	0.0926
$B_{12}P_{12}$ -NO ₂	-6.9500	-4.0811	2.8689	6.9500	4.0811	-5.5155	4.9094	0.1018
$In_{12}As_{12}$	-6.2350	-4.0543	2.1807	6.2350	4.0543	-5.1446	4.2078	0.1188
$In_{12}As_{12}$ -NO ₂	-6.1722	-4.1662	2.006	6.1722	4.1662	-5.1692	4.0891	0.1222
$In_{12}P_{12}$	-6.3746	-4.0724	2.3022	6.3746	4.0724	-5.2235	4.3384	0.1152
$In_{12}P_{12}$ -NO ₂	-6.4771	-4.1266	2.3505	6.4771	4.1266	-5.3018	4.4138	0.1133

 $\textbf{Table S1} \ Frontier \ Molecular \ Orbital \ Analysis: E_{HOMO}, \ E_{LUMO}, \ E_g, \ (IP), \ (EA), \ (\mu), \ (\eta), \ and \ (S)$

Table S2 QTAIM Analysis of NO $_2$ Adsorption on $X_{12}Y_{12}$ nanocage

	ρ	$(\nabla^2 \rho)$	GBCP	H _{BCP}	V _{BCP}	 V/G
$B_{12}As_{12}$ -NO ₂	0.151	0.5369	0.2482	-0.1141	-0.3623	-1.4597
$B_{12}P_{12}$ -NO ₂	0.0118	-0.1767	0.236	-0.6918	-0.9278	-3.9314
$In_{12}As_{12}$ -NO ₂	0.1069	0.5057	0.5135	-0.1889	-0.7025	-1.3681
$In_{12}P_{12}$ -NO ₂	0.7449	0.3251	0.3143	-0.9747	-0.4118	-1.3102

Table S3 NBO Analysis of NO $_2$ Adsorption on $X_{12}Y_{12}$ nanocage

	Donor (d)	Assentar	E^2	E _(j) -E _(i)	F _(i,j)
Donor (d)		Acceptor	(kcal/mol)	(a.u)	(a.u)
$B_{12}As_{12}\text{-}NO_2$	BD (1) N25 - O26	RY (1) B1	0.91	1.47	0.046
$B_{12}P_{12}$ -NO ₂	LP (1) O27	LV (1) B1	7.45	0.63	0.087
In ₁₂ As ₁₂ -NO ₂	BD (2) N25 - O26	BD* (1) In1 - O27	0.85	1.02	0.032
In ₁₂ P ₁₂ -NO ₂	LP (2) O27	LV (1) In1	13.24	0.52	0.105

	Ç	О СТ
	Mulliken	NBO
$B_{12}As_{12}$ -NO ₂	-0.3980	-0.0383
$B_{12}P_{12}$ -NO ₂	-0.4137	-0.0571
$In_{12}As_{12}$ -NO ₂	0.7095	1.2873
$In_{12}P_{12}$ -NO ₂	0.7832	1.3644

Table S4 Charge Transfer (Q_{CT}) values from Mulliken Charge and NBO charge

Table	S5	UV-Vis	Analysis
-------	-----------	--------	----------

λ_{max}	f_o	ΔE	Domminant transition
(nm)		(eV)	_
319.2	0.0647	3.885	HOMO-4 \rightarrow HUMO
736	0.0171	1.685	HOMO-2 \rightarrow HOMO
292.5	0.7388	4.238	HOMO-2 \rightarrow HUMO
450.5	0.0088	2.752	HOMO-3 \rightarrow HOMO
389	0.0771	3.187	$\mathrm{HOMO}\text{-}13 \rightarrow \mathrm{HOMO}$
526.8	0.0053	2.353	HOMO-5 \rightarrow HOMO
357	0.1215	3.473	$\mathrm{HOMO}16 \rightarrow \mathrm{HOMO}$
1546.1	0.0375	0.802	HOMO-1 \rightarrow HOMO
	$\begin{array}{r c} \lambda_{max} \\ \hline (nm) \\ 319.2 \\ 736 \\ 292.5 \\ 450.5 \\ 389 \\ 526.8 \\ 357 \\ 1546.1 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c } \hline λ_{max} & f_o & ΔE \\ \hline (nm) & (eV) \\\hline 319.2 & 0.0647 & 3.885 \\\hline 736 & 0.0171 & 1.685 \\\hline 292.5 & 0.7388 & 4.238 \\\hline 450.5 & 0.0088 & 2.752 \\\hline 389 & 0.0771 & 3.187 \\\hline 526.8 & 0.0053 & 2.353 \\\hline 357 & 0.1215 & 3.473 \\\hline 1546.1 & 0.0375 & 0.802 \\\hline \end{tabular}$

